Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes
نویسنده
چکیده
This paper is concerned with the development of general-purpose algebraic flux correction schemes for continuous (linear and multilinear) finite elements. In order to enforce the discrete maximum principle (DMP), we modify the standard Galerkin discretization of a scalar transport equation by adding diffusive and antidiffusive fluxes. The result is a nonlinear algebraic system satisfying the DMP constraint. An estimate based on variational gradient recovery leads to a linearity-preserving limiter for the difference between the function values at two neighboring nodes. A fully multidimensional version of this scheme is obtained by taking the sum of local bounds and constraining the total flux. This new approach to algebraic flux correction provides a unified treatment of stationary and time-dependent problems. Moreover, the same algorithm is used to limit convective fluxes, anisotropic diffusion operators, and the antidiffusive part of the consistent mass matrix. The nonlinear algebraic system associated with the constrained Galerkin scheme is solved using fixed-point defect correction or a nonlinear SSOR method. A dramatic improvement of nonlinear convergence rates is achieved with the technique known as Anderson acceleration (or Anderson mixing). It blends a number of last iterates in a GMRES fashion, which results in a Broyden-like quasi-Newton update. The numerical behavior of the proposed algorithms is illustrated by a grid convergence study for convectiondominated transport problems and anisotropic diffusion equations in 2D.
منابع مشابه
Algebraic Flux Correction I Scalar Conservation Laws
This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusive part of the discrete operator into numerical...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...
متن کاملEdge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in...
متن کاملBound-preserving high order schemes
For the initial value problem of scalar conservation laws, a bound-preserving property is desired for numerical schemes in many applications. Traditional methods to enforce a discrete maximum principle by defining the extrema as those of grid point values in finite difference schemes or cell averages in finite volume schemes usually result in an accuracy degeneracy to second order around smooth...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2012